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1 Introduction

This document accompanies our main article and provides a detailed discussion of technical
points. In particular, Section 2 extends on some technical details of dimensional reduction,
estimation and inference procedures: the spectral density estimator; step-by-step Gibbs
sampler used for posterior inference and information criteria that were considered for model
selection under the context of MIC. Section 3 establishes the ground for our simulation stud-
ies, how the EEG signals were engineered, based on which we further investigate the cases
of non-stationarity, varying sample sizes and Signal-to-Noise Ratios (SNRs). We conclude
with an extended report of our case study, covering EEG preprocessing and quality exami-
nation steps, post analysis of MIC clusters on spectral domain and an assessment of MCMC
convergence, in Section 4. The implementation of MIC is fulfilled in R and Rcpp, which is
publicly available on Github (https://github.com/Qian-Li/MIC2)

2 Estimation and Model Selection Procedures

2.1 Spectral Density Estimation

Let {Zτ , τ = 0,±1,±2, . . .} be a zero mean, weakly stationary time series, with autoco-
variance CZ(h) = E(Zτ , Zτ+h), (h = 0,±1,±2, . . .). We define the spectral density function
φZ(ω) of Zτ as in [2], so that:

φZ(ω) =
1

2π

∞∑
τ=−∞

CZ(τ) exp(−iτω), ω ∈ [0, π].

Let ĈZ(τ) = 1/(N − h)
∑N

h+1 x(t) · x(t − h) be the sample autocovariance function. Note
that CZ(·) is symmetric around 0, therefore it suffices to define the one-sided estimator for
h ∈ {0, 1, 2, . . .}. By introducing a smoothing kernel w(u), and a truncation parameter
a > 0, we obtain a consistent estimator of the spectral density function at Fourier frequency
ξ as follows:

φ̂(ξ) =
∑
|h|≤a

w(h/a)ĈZ(h) exp(−i2πξh), ξ ∈ [0, 1/2]. (1)

And here we use the Parzen window with bandwidth a for smoothing,

w(u) =


1− 6|u|2 + 6|u|3, if |u| < 1

2

2(1− |u|)3, if 1
2
≤ |u| ≤ 1

0, otherwise.
.

The estimator in (1) is a natural non-parametric estimator of the spectral density, which has
been well recognized in both statistics and engineering literatures ([1], [13]). It smoothes the
periodogram by means of both the Parzen kernel and a pre-determined bandwidth a. Ombao
et al. 10 suggests data-driven bandwidth selection based on generalized cross-validations,
however, we proceed with the maximal bandwidth a = N − 1 when estimating spectral
densities for each segmented EEG signals. The considerations come in two-fold: bias weigh
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more than inconsistency when estimating spectral densities on short time series; variance
reduction is feasible afterwards by considering the Welch’s method ([13]).

To be precise under the setting of EEG studies, we consider an ensemble of time-
series segments denoted with Yij(si). Therefore for subject i (i = 1, . . . , n), at electrode
j (j = 1, . . . , p), we obtain EEG signals of every 1024ms on a common set of segments
si = {s : 1, . . . , qi} which also denotes time under the context of ongoing experiments.
Pipelined data quality control, including artifacts removal and rejections, proceeds linear
de-trending and tapering of 10% at both ends on segment level. Thereafter, we obtain
spectral density estimates as in (1), on subject specific set of segments si, and denote with
φ̂ij(ω, s), s ∈ si. Finally, as we operate over epochs composed of γ segments, the adjacent
epochs overlay a percentage of δ with each other. For instance, the i-th epoch (t = i) aver-
ages segments within the range of [(i − 1)(1 − δ)γ + 1, (i − 1)(1 − δ)γ + γ] until its upper
bound run out of si, as is depicted in Fig 1. More formally,

φ̂ij(ω, t) =
1

γ

(t−1)(1−δ)γ+γ∑
s=(t−1)(1−δ)γ+1

φ̂ij(ω, s) · 1(s(u) ∈ si),

where s(u) indicates the upper bound of the smoothing window, i.e. s(u) = (i− 1)(1− δ)γ +
γ. The proposed epoch spectral estimator serves a moving average of the segment level
periodograms, a special case of the Welch’s reduced variance estimator.

subject 1 1 2 3 4 5 6 35 36

Epoch 1

Epoch 2

Epoch e1

subject 2
1 2 3 4 5 6 50 51

Epoch 1 Epoch e2

Epoch 2

Figure 1: Epoch smoothing on spectral estimates: shaded blocks indicate rejected
segments by quality control, which cannot be located on the original experimental time
scale; segments (as numbered blocks) are averaged within a window of γ = 5 that overlaps
δ = 4/5,

2.2 Gibbs Sampler

The proposed MIC model is implemented under a fully Bayesian framework, with all the
model parameters and latent variables sampled from a Gibbs sampler. By default, the
algorithm is initialized with a K-groups partition using the kmeans of RcppArmadillo, then
it proceeds hierarchically upward and samples sequentially from either full conditional or
marginal posterior distributions. At the m-th iteration, the sampling scheme is detailed as
below:
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• Θi(t)|Xi(t),Li(t) ∼ f(θik(t)|Xi(t),Li(t) = k) for i ∈ {1, . . . , n} and t ∈ {1, . . . , Ti}.

Specifically, the posterior distribution for θ
(m)
ik (t) is conjugate:

θ
(m)
ik (t) ∼ NIW(µ

(m)
ik (t),λ

(m)
ik (t), σ2

ik
(m)

(t), ν
(m)
ik (t)|Xi(t))

And these quantities are first updated based on the current cluster assignment, L(m−1)
i (t).

• Li(t)|Xi(t),θi(t),βi, αi,Π ∼
∏

j Pr(k|Xij(t),θij(t),βi, αi,Π) for j = 1, . . . , p and k =
1, . . . , K where marginal distribution of Li(t) is derived by integrating out latent labels
of Ci and S,

Pr(k|Xij(t),θij(t), βij, αi,Π) ∝ π(k,Π(m−1), β
(m−1)
ij , α

(m−1)
i )f(Xij(t)|θ(m)

ik (t)),

π(k,Π(m−1),β
(m−1)
i , α

(m−1)
i ) = Pr(Lij(t) = k|Π(m−1), β

(m−1)
ij , α

(m−1)
i )

And L
(m)
ij (t) will be sampled as k ∈ {1, . . . , K} with the probability proportional to

the above expression.

• Ci|Li(t), αi,βi,Π ∼
∏

j Pr(k|Lij(t), . . . , Lij(Ti),Π, αi,βi), where marginal distribution
of Ci is derived by integrating out latent labels S,

Pr(k|Lij(1), . . . , Lij(Ti),Π, αi,βi) ∝ π(k,Π(m−1), αi)

(
Ti∏
t=1

νe(Lij(t)
(m), k, β

(m−1)
i (t))

)
,

π(k,Π(m−1), αi) = Pr(Cij = k|Π(m−1), α
(m−1)
i )

• βi(t)|Ci,Li(t) ∼ TBeta(ci + τi, di + pTi − τi(t), 1/K) where τi(t) is the number of

samples (Lij(t) = Cij) for t ∈ {1, . . . , Ti} and j ∈ {1, . . . , p}. Also Ci = C(m)
i and

Li(t) = L(m)
i (t).

• Sj|Π, C1j, . . . , Cnj, αi ∼ Pr(k|C1j, . . . , Cnj,Π, αi), where

Pr(k|C(m)
1j , . . . , C

(m)
nj ,Π

(m−1), α
(m−1)
i ) ∝ π

(m−1)
k

n∏
i=1

νs(k, C
(m)
ij , α

(m−1)
i ).

• αi|Ci,S ∼ TBeta(ai+ψi, bi+p−ψi, 1/K) where ψi is the number of electrodes (C
(m)
ij =

S
(m)
j ) for j ∈ {1, . . . , p}.

• Π|S ∼ Dirichlet(η + ρ) where ρk is the number of samples clustered k in S(m) and
ηk = 3 is chosen as a priori.

Markov chain Monte Carlo (MCMC) proceeds by hierarchically iterating through the pos-
terior distributions, discarding 1/5 of the posterior samples for burn-in and keeping the rest
for the posterior calculations. Parameter estimates and credible intervals are extracted and
summarized, after which the information criteria are calculated to select the optimal K
across models.
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2.3 Model Selection and Information Criteria

In this section, we expatiate on the appropriate information criteria serving the purpose of
model selection. We also report the details to the calculation of a rescaled coherence, ᾱ∗. To
certain degree, this self-contained metric reflects the individual and group level fitting and
stays robust to the input dimensionality, therefore it could be used for model assessment
from a complementary perspective and across dimensions. The dksearch algorithm of MIC2
package is steered by the BIC at a fixed dimension d, but reports all the information criteria
and the adjusted coherence as output along searching trajectory.

• The BIC (Schwarz et al. 11) is defined as

BIC(K) = 2 log f(y|τ̂ , K)− d log(n),

where d is the number of free parameters.

In our model:

BIC(K) =
∑
i

Ti∑
t

2 log f(Xi(t)|(θ̂i(t), L̂i(t)), K)− df log(P ),

where df is the number of free parameters in the model,

df = 2K · d ·Nepoch +Nepoch + n+K − 1,

and d is the dimensionality of the eigen-Laplacian data.

• The DIC (Spiegelhalter et al. 12) uses effective model parameters pd instead, which
has a general form of,

DIC(K) = −2 log p(y|τ̂ , K) + 2pd,

where pd = Eτ |y(log p(y|τ̂))− log p(y|τ̂).

[3] suggested a form of DIC (as DIC4 in their paper), which treats the labels L as
missing data thus taking expectation with respect to them afterwards. The formal
definition of DIC in our model is,

DIC(K) =
∑
i

Ti∑
t

{ELi(t)l|Xi(t)[DIC(Xi(t),Li(t), K)]}

=
∑
i

Ti∑
t

{−4 Eθ,Li(t)|Xi(t)[log f(Xi(t),Li(t)|θi(t))]

+ 2 ELi(t)|Xi(t)[log f(Xi(t),L|θ̂i(t))]}

• The adjusted coherence (Lock and Dunson 9) was suggested for choosing K,

α∗i =
K · αi − 1

K − 1
; ᾱ∗ =

K · ᾱ− 1

K − 1
,
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Because coherence parameters are restricted as αi ∈ (1/K, 1) in our formulation, we
normalize K-dependent measures so that α∗i reflects adherence to group mean on a
common range of (0, 1). In our model, αi quantify the level of agreement between the
individual and group consensus labels, which complements the BIC and DIC that are
defined on the epoch level. As pointed out by [9], this measure tends to favors small
K for more coherent partitions between individuals and their consensus, therefore we
only suggest its usage for informal assessment across dimensions but recommend either
BIC or DIC as a formal device.

3 Extended Simulation Study

3.1 Simulating Band-Oscillating EEG Signals

EEG oscillations are often characterized by means of frequency bands, namely: delta (0-4
Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz) and gamma (30-50 Hz). Following
[5], we use a linear mixture of second order auto-regressive (AR(2)) processes to simulate
signals that would feature certain desired properties in their power spectral densities. To be
specific, an AR(2) process Zt is defined as,

Zt = φ1Zt−1 + φ2Zt−2 + εt

where εt is a Gaussian white noise process. The oscillation properties of the procedure can be
reflected by its characteristic polynomial, φ(z) = 1− φ1z − φ2z

2. The root to this equation,

denoted as z
(1)
0 and z

(2)
0 , admit a polar representation that directly relates to the features in

the frequency domain,

|z(1)0 | = |z
(2)
0 | = M, arg(z

(·)
0 ) =

2πη

Fs
,

where Fs is the sampling frequency, M is the amplitude or magnitude of the root (M > 1) and
η is the frequency index. The spectrum of the AR(2) process with polynomial roots above
will have peak frequency at η, and it gets broader as M →∞ and narrower as M → 1+. That
is to say, with a predetermined set of spectral characteristics (Fs, η,M), one can simulate a
finate sample of the corresponding AR(2) process parameterized by coefficients (φ1, φ2).

In our experiment, M = 1.03 and Fs = 200Hz are fixed and 5 peak frequencies are
considered for linear mixture. Let Zm

t be the m-th AR(2) process ,m = 1, . . . , 5, that has
single peak frequency at η = 2, 6, 10, 21 and 40 Hz respectively. We linearly mix up the
simulated processes by a set of pre-determined weights eL(j), that is specific to electrode j,
therefore electrodes sharing the same weights vector have similar spectral profiles and should
be grouped together. To exemplify,

Xjt = eTL(j) · Zjt + εjt, Zjt = (Z1
jt, Z

2
jt, Z

3
jt, Z

4
jt, Z

5
jt)

T ,

where εjt is a white noise process independent from the true signal eTL(j)·Zjt. We simulated

K groups of signal patterns, labeled as L(j) ∈ {1, . . . , K}, by taking a linear combination of
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five AR(2) processes of weights eL(j). To be more specific, 4 groups of synchronized patterns
(K = 4) are generated by considering weights,

e1 = (1, 2, 0, 0, 0)T , e2 = (0, 1, 2, 0, 0)T , e3 = (0, 0, 1, 1, 0)T , e4 = (0, 0, 0, 1, 1)T

3.2 Simulating Non-stationary EEGs

To assess the robustness of proposed procedure to the violations of stationarity, we construct
a piecewise stationary process that randomly alternates between a main and an off states.
Meanwhile, the labels stays the same before and after the transitions, such that linear weights
bijectively match to its alternative within the same cluster. To be specific, the two sets of
AR(2) mixing weights, eL(j) and e′L(j) characterizing the main and off states, are chosen to
be,

e1 = (1, 2, 0, 0, 0)T ←→ e′1 = (1, 0, 0, 2, 0)T

e2 = (0, 1, 2, 0, 0)T ←→ e′2 = (0, 0, 2, 1, 0)T

e3 = (0, 0, 1, 1, 0)T ←→ e′3 = (0, 0, 1, 2, 0)T

e4 = (0, 0, 0, 1, 1)T ←→ e′4 = (0, 0, 0, 1, 2)T

3.3 Extended Results

We evaluate the proposed procedure against multiple epoch window sizes of γ = {4, 6, 8, 10}
with an fixed amount of overlap of 50%, on a sample of 10 subjects each with 50 segments of
simulated signals. Results reported here are based on a Monte Carlo study of 100 repeated
datasets, from the perspective of α estimates and clustering accuracy relative to the known
truth. Fig 2 demonstrates the results of both the cases: α estimates are stable and accurate
over varying smoothing settings (Fig 2(a)), clustering accuracy is reliable on the individual
level regardless of its coherence to the group and the group labels are recovered accurately
even when the sample coherence is low (Fig 2(b)).

Furthermore, we extend the simulation study to asses the effects of varying sample sizes
and signal-to-noise ratios (SNRs). To be exact, SNR of the simulated time series Xj(t) =
eTL(j) · Zj(t) + εj(t), is defined,

SNR =
Var(eTL(j) · Zj(·))

Var(εj(·))
,

and we investigate the clustering accuracy when sample size is set to n ∈ {10, 20, 40} with a
SNR∈ {10, 5, 1}. For each scenario, 100 Monte Carlo datasets are simulated with an random
α uniformly chose between 0.25 and 0.9, however, the time series are set to be stationary at
the main state. The signal length retains at 50 segments, smoothing fixed at a window size
of 5 and overlapping of 2, along with the other technical parameters unchanged regarding
the simulation. As shown in Table 1, individual labels are perfectly estimated, group label
accuracy is robust to low SNRs and is significantly improved as sample size increases.

The setup is repeated on simulated time series that are non-stationary, which randomly
alternates between the main and off state. Clustering accuracy is reported in Table 2,
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(a) (b)

Figure 2: Extended simulation results: (a) α̂ and its 90% credible interval from MCMC
samples, against the true α’s. (b) Clustering accuracy at both individual and group level,
as a function of the true α’s.

N = 10 N = 20 N = 40
SNR grp ind grp ind grp ind
10 0.8121 1.000 0.8684 1.000 0.9031 1.000
5 0.8073 1.000 0.8669 1.000 0.8975 1.000
1 0.8099 1.000 0.8691 1.000 0.9000 1.000

Table 1: Clustering accuracy relative to sample sizes and SNRs

where both individual and group accuracies approximates the stationary case consolidating
the robustness of the proposed procedure to piecewise stationarity.

4 Case Study Extended Results

4.1 EEG measurements

The sample in our case study includes 9 participants (29-60 months of age) recognized as
Typical Developing (TD), and 10 participants (27-99 months of age) diagnosed with Autism
Spectrum Disorder (ASD). During the experiment, EEG was recorded at 250/500Hz using
129 channel geodesic nets with Ag/AgCl electrodes, while participants watched videos of
soap bubbles and other non-social images on a computer monitor for 2 to 6 minutes.

The EEG recordings were bandpass filtered at 1-50 Hz using a finite impulse response
(FIR) filter with EEGLAB toolbox (Delorme and Makeig 4). Recordings were then seg-
mented into 1024 ms segments for preprocessing. Noisy or loose channels were spherically
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N = 10 N = 20 N = 40
SNR grp ind grp ind grp ind
10 0.8079 1.000 0.8687 1.000 0.8971 1.000
5 0.8122 1.000 0.8667 1.000 0.8985 1.000
1 0.8131 1.000 0.8660 1.000 0.9020 1.000

Table 2: Clustering accuracy relative to sample sizes and SNRs (non-stationary)

interpolated using EEGLAB, and EEG recording segments with > 11 interpolated channels
were rejected. 4 eye channels were physically removed from the net before the recording
session even began, therefore excluded from clustering analysis along with another reference
channel that was placed on the top of the scalp. All remaining segments were manually
inspected for non-stereotyped artifacts, e.g., electromyogram (EMG), and rejected based
on qualitative inspection; then a combined principal component analysis (PCA) and inde-
pendent component analysis (ICA) approach was used to eliminate stereotyped artifacts,
e.g., ocular artifacts. All EEG recordings were re-referenced to the average prior to power
calculations.

EEG was recorded for 165.1(±74.3) seconds among ASD and 139.9(±30.1) among TD.
After the aforementioned quality control, 102.7(±19.8, ASD) and 95.9(±32.8, ASD) segments
entered the MIC analysis.

4.2 Model selection

The searching algorithm proposed in our main article is empowered to guide the choice
of dimensionality d and the number of clusters k. Multiple smoothing settings (γ, δ) are
evaluated, as shown in Table 3, and overall k = 5 is favored within both TD and ASD
cohort. It is also worth noticing that mean coherence estimated from TD is always higher
than ASD, suggesting less heterogeneity in their estimated cluster results. As the window size
γ increases, 6 clusters are favored instead of 5, but the adjusted coherence metric indicates
worse fitting on the group level, therefore we focused on γ = 6. Similarly more clusters
are suggested for smaller overlaps, as have been observed in the simulation study, which
could indicates the non-stationary nature of the observed EEG readings. And eventually,
we decide to proceed with γ = 6, δ = 4/6 by weighing in considerations for non-stationarity
and overfitting on the epoch level.

4.3 MCMC Mixing

We consider MCMC mixing by evaluating coherence parameter (α) and cluster estimates
convergence at a fixed configuration of smoothing (γ = 6 and δ = 4) and model setup (d = 5
and K = 5). MCMC draws 30k and 60k samples respectively, and a comparison is presented
in Table 4 in terms of α̂ and clustering results. To compare K-clusters partition, we used
the adjustedRandIndex function of the mclust package in R (see [7], [6] and [8]).

The 90% credible intervals for αi’s are relatively close within the range of ±0.01, and the
cluster labels perfectly agree at group level and highly consistent for coherent individuals
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smoothing TD ASD
window (γ) overlap (γδ) d k mean(α̂) d k mean(α̂)

4 2 5 5 0.783 5 5 0.751
6 3 5 5 0.747 5 5 0.723
8 4 6 5 0.696 5 5 0.701
10 5 6 6 0.691 6 5 0.661
12 6 6 6 0.669 6 5 0.659
6 5 5 5 0.786 5 5 0.754
6 4 5 5 0.763 5 5 0.722
6 3 5 5 0.747 5 5 0.723
6 2 6 6 0.725 5 5 0.696
6 1 6 5 0.717 5 5 0.695
6 0 6 6 0.698 5 5 0.679

Table 3: (d, k) search results on TD and ASD with varying smoothing settings

α C.I. 20K α C.I. 40K adjRandIndex
population · · 1.0000

subject 1 (0.7249, 0.8643) (0.7277, 0.8695) 0.9784
subject 2 (0.7053, 0.8480) (0.6984, 0.8432) 0.9666
subject 3 (0.6579, 0.8188) (0.6641, 0.8297) 0.9264
subject 4 (0.7158, 0.8549) (0.7188, 0.8574) 0.8940
subject 5 (0.6003, 0.7669) (0.6097, 0.7739) 0.7839
subject 6 (0.6745, 0.8295) (0.6787, 0.8329) 0.7082
subject 7 (0.7118, 0.8549) (0.7099, 0.8527) 0.9645
subject 8 (0.6817, 0.8337) (0.6732, 0.8269) 0.7751
subject 9 (0.7328, 0.8656) (0.7408, 0.8707) 0.9782

Table 4: MCMC mixing at 30k and 60k draws

(subject 1, 2, 7, and 9). Therefore, for the purpose of facilitating group level inference,
the high consistency of the proposed method highlights its advantage of being robust to
loosely coherent individuals, whose hard clustering label estimates are sensitive to the missing
segments and experimental artifacts.

4.4 MIC separated Spectral Densities

To better understand how band powers are driving the MIC clusters, we relate the MIC
labeled electrodes to their power spectral densities obtained on the epoch level. Fig 3 presents
the epoch level spectral densities and the corresponding MIC determined cluster labels from
two individuals belonging to the ASD group. First of all, every cluster manifests its spectral
characteristics for both individuals, for example, frontal region (red) features a bimodal PSD
in the theta and delta bands, and separable from each other visually. More importantly, the
spectral characteristics differ dramatically across individual, even when the electrodes are
clustered together. As an example, the mid-frontal region (red) is identified for both cases,
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even though it features a bimodal PSD in theta and delta in (a) but theta and alpha in
(b). It also highlights an advantage of the proposed MIC framework, that the clustering
results depends on the proximity measure while allowing for information integration across
individuals.

(a) (b)

Figure 3: MIC labeled electrodes and underlying PSDs for two subjects from ASD group:
(a) one epoch from subject 1. (b) one epoch from subject 2.

4.5 Cluster assessment using Random Forest

MIC provides estimates of cluster labels at the group, subject, and epoch level. Therefore,
a formal attempt at covariate adjustment may require significant methodological extensions
to account for the multilevel nature of clustering patterns. Here we conduct an informal
investigation on how specific spectral features, and individual characteristics may explain
clustering. Specifically, we consider a post-hock analysis of cluster label estimates at the
subject level. Taking cluster labels as a categorical outcome, we explain cluster label vari-
ability in a classification setting. Each individual contributes 124 electrodes labels. Cluster
label predictors include, cohort indicators (TD/ASD), age information, and band power es-
timates. In order, to obtain band power estimates at the subject level, we consider the most
coherent (highest β̂) epoch from each individual, and summarize its spectral estimates by 5
frequency bands.

We use the randomForest function from the R package randomForest to predict MIC
estimated cluster labels, using power bands, group and age. Classification errors are 0.2806,
0.2783, 0.2049, 0.2603 and 0.3450 for each cluster respectively. Table 5 shows the cluster
specific predictor importance, and highest contribution comes from age against the lowest
from group. As for band powers, theta band turns out the most important whereas beta band
the least, but in general band powers are not predicting cluster labels well, or equivalently,
the MIC estimated clusters are not driven by any band patterns.
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cluster 1 2 3 4 5 MeanAccuDecre MeanGiniDecre

theta 0.1651 0.1527 0.1497 0.1434 0.1328 0.1487 310.41
delta 0.1367 0.1383 0.1242 0.1444 0.1397 0.1359 323.87
alpha 0.1251 0.1223 0.0964 0.1567 0.1188 0.1222 303.63
beta 0.1026 0.1021 0.0576 0.1267 0.1141 0.0981 277.19

gamma 0.1118 0.1317 0.0859 0.1392 0.1247 0.1172 302.06
group 0.0440 0.0485 0.0176 0.0486 0.0424 0.0392 36.55

age 0.1523 0.1775 0.0853 0.1951 0.1827 0.1550 306.15

Table 5: Predictor importance by using a RandomForest to predict MIC labels
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